જો ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda  - 1}\\
{\lambda  - 1}&\lambda 
\end{array}} \right);\,\lambda  \in N$ હોય તો  $|A_1| + |A_2| + ..... + |A_{300}|$ મેળવો.

  • A

    $(299)^2$

  • B

    $(300)^2$

  • C

    $(301)^2$

  • D

    એકપણ નહીં.

Similar Questions

$\theta \in (0,\pi)$ ની કેટલી કિમંત માટે રેખીય સમીકરણો  $x + 3y + 7z = 0$ ; $-x + 4y + 7z = 0$ ;   $ (sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ ને શૂન્યતર ઉકેલ ધરાવે .

  • [JEE MAIN 2019]

જો ${2^{{a_1}}},{2^{{a_2}}},{2^{{a_3}}},{......2^{{a_n}}}$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
  {{a_1}}&{{a_2}}&{{a_3}} \\ 
  {{a_{n + 1}}}&{{a_{n + 2}}}&{{a_{n + 3}}} \\ 
  {{a_{2n + 1}}}&{{a_{2n + 2}}}&{{a_{2n + 3}}} 
\end{array}} \right|$ ની કિમંત મેળવો.

નીચે આપેલાં શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો : $(1,0),(6,0),(4,3)$

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{x + a}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right| = 0$ નું કોઈ એક બીજ મેળવો.

ધારો કે $S _1$ અને $S _2$ એવા દરેક $a \in R$ - \{0\}ના ગણો દર્શાવે છે જેના માટે સુરેખ સમીકરણ સંહતિ

$a x+2 a y-3 a z=1$

$(2 a+1) x+(2 a+3) y+(a+1) z=2$

$(3 a+5) x+(a+5) y+(a+2) z=3$

ને અનુક્રમે અનન્ય ઉકેલ તથા અસંખ્ય ઉકેલો હોય. તો

  • [JEE MAIN 2023]